Home / Artificial Intelligence / Artificial Intelligence: Teaching Physics To Neural Networks Removes ‘Chaos Blindness’

Artificial Intelligence: Teaching Physics To Neural Networks Removes ‘Chaos Blindness’

Artificial Intelligence:


Automatically sync your GitHub releases to SourceForge quickly and easily with

this tool

and take advantage of SourceForge’s massive reach. Check out all of SourceForge’s



Follow Slashdot on LinkedIn



Artificial Intelligence: AI

Artificial Intelligence: Science

Artificial Intelligence:

Teaching Physics To Neural Networks Removes ‘Chaos Blindness’ (phys.org)



from the general-physics dept.

An anonymous reader quotes a report from Phys.Org:

Researchers from North Carolina State University have discovered that teaching physics to neural networks enables those networks to better adapt to chaos within their environment. Neural networks are an advanced type of AI loosely based on the way that our brains work. Our natural neurons exchange electrical impulses according to the strengths of their connections. Artificial neural networks mimic this behavior by adjusting numerical weights and biases during training sessions to minimize the difference between their actual and desired outputs. For example, a neural network can be trained to identify photos of dogs by sifting through a large number of photos, making a guess about whether the photo is of a dog, seeing how far off it is and then adjusting its weights and biases until they are closer to reality.

The drawback to this neural network training is something called “chaos blindness” — an inability to predict or respond to chaos in a system. Conventional AI is chaos blind. But researchers from NC State’s Nonlinear Artificial Intelligence Laboratory (NAIL) have found that incorporating a Hamiltonian function into neural networks better enables them to “see” chaos within a system and adapt accordingly. Simply put, the Hamiltonian embodies the complete information about a dynamic physical system — the total amount of all the energies present, kinetic and potential. Picture a swinging pendulum, moving back and forth in space over time. Now look at a snapshot of that pendulum. The snapshot cannot tell you where that pendulum is in its arc or where it is going next. Conventional neural networks operate from a snapshot of the pendulum. Neural networks familiar with the Hamiltonian flow understand the entirety of the pendulum’s movement — where it is, where it will or could be, and the energies involved in its movement.

In a proof-of-concept project, the NAIL team incorporated Hamiltonian structure into neural networks, then applied them to a known model of stellar and molecular dynamics called the Henon-Heiles model. The Hamiltonian neural network accurately predicted the dynamics of the system, even as it moved between order and chaos. “The Hamiltonian is really the ‘special sauce’ that gives neural networks the ability to learn order and chaos,” says John Lindner, visiting researcher at NAIL, professor of physics at The College of Wooster and corresponding author of a paper describing the work. “With the Hamiltonian, the neural network understands underlying dynamics in a way that a conventional network cannot. This is a first step toward physics-savvy neural networks that could help us solve hard problems.”

The work

appears in the journal Physical Review E


The finest eloquence is that which gets things done.


Read More

Share this:


About admin

Check Also

Artificial Intelligence: How Can AI and ML Transform the Way We Read and Understand Data?

Artificial Intelligence: How Can AI and ML Transform the Way We Read and Understand Data?

Today’s business is ruled by data and data-driven understanding. How you understand the data and interpret the data into business decisions has a direct impact on your business conversion and growth. For a more precise understanding of data, today we have artificial intelligence (AI) and Machine Learning (ML) technologies on our side. No doubt, these…

Leave a Reply

Your email address will not be published. Required fields are marked *